

PBC-003-1013002

Seat No. _____

B. Sc. (Sem. III) (CBCS) Examination

November / December - 2018

Physics: Paper - P - 301

Faculty Code: 003

Subject Code: 1013002

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) Attempt all the questions.

- (2) Figures on right side indicate marks.
- (3) Notations have their usual meanings.
- 1 (a) Objective type questions:
 - $(1) \quad \hat{j} \cdot \hat{j} = \underline{\qquad}.$
 - (2) $\nabla \cdot A$ is the scalar or vector?
 - (3) $\nabla \times (f\vec{A}) = \underline{\hspace{1cm}}$
 - (4) Div (Curl f) = _____.
 - (b) Answer in brief: (any one out of two) 2
 - (1) Find the gradient of $f(x, y, z) = x^2 + y^3 + z^4$.
 - (2) What is ∇ ? Represent it into component form.
 - (c) Answer in detail: (any **one** out of two) 3
 - (1) Explain the vector triple product.
 - (2) Prove that $\nabla \cdot (f\vec{A}) = f(\nabla \cdot \vec{A}) + \vec{A} \cdot (\nabla f)$.
 - (d) Write a note: (any **one** out of two) 5
 - (1) Explain in detail how vector transform from one system to another system.
 - (2) Explain the fundamental theorems of curls.

4

2 (a) Objective type questions:

4

- (1) State the Coulomb's law.
- (2) What is the unit of electric field intensity?
- (3) Define the potential and give its unit.
- (4) $\nabla \cdot E =$
- (b) Answer in brief: (any one out of two)

- 2
- (1) A uniformly charged sphere has a total charge of $400\,\mu\,\mathrm{C}$ and radius of 8 cm. Find the electric field intensity at a point on the surface of the sphere.
 - (Hint: $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{R^2}$)
- (2) At a point of electric field a charge of 5×10^{-4} C experiences a force of 2.25 N. Calculate the intensity of electric field at that point.
- (c) Answer in detail: (any one out of two)

- 3
- (1) Explain continuous charge distribution of various types.
- (2) Derive the Poisson's and Laplace's equations.
- (d) Write a note: (any one out of two)

5

- (1) Derive the Gauss's law in differential and integral form.
- (2) Find the value of $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$.
- 3 (a) Objective type questions:

4

- (1) How much work done by a static magnetic field on a moving charge ?
- (2) Which relation is known as cyclotron formula?
- (3) Write equation of continuity in magneto statics.
- (4) What is differential form of Ampere's law?
- (b) Answer in brief: (any one out of two)

2

(1) Calculate the magnitude of magnetic field due to a long thin wire carrying current of 15 A at distance of 1 cm from the wire.

$$\left[\mu_o = 4\pi \times 10^{-7} N / A^2\right]$$

(2) A long wire carries a current of 5 mA. Find the line integral of \vec{B} around the path of radius

10 cm, enclosing the wire. $\left[\mu_o = 4\pi \times 10^{-7} N/A^2\right]$

(c) Answer in detail : (any **one** out of two) 3 Derive equation of continuity. (1) A long wire carries a current of 2 A. An electron (2) travels with a velocity of 4×10^{-4} m/s parallel to the wire 0.1 from it in direction opposite to the current. What force does the magnetic field of current exert on moving electron? $\left[\mu_Q = 4\pi \times 10^{-7} \, N \, / \, A^2 \text{ and } Q = 1.6 \times 10^{-19} \, C \right]$ (d) Write a note: (any one out of two) 5 Give the quantitative explanation of cycloid motion. (2) Describe magnetic field above a straight wire. Objective type questions: 4 4 (a) Define dielectrics. (1) The induced electric dipole moment $\vec{p} = \underline{\hspace{1cm}}$ What is magnetization? (3) Give the equation of torque acting on a magnetic dipole. 2 Answer in brief: (any **one** out of two) What do you mean by induce dipoles? (1) (2) Give the mechanism for responsible peramagnetism. (c) Answer in detail: (any one out of two) 3 Explain the polarization of matter. (2) Obtain the expression for force acting on a magnetic dipole in a magnetic field. Write a note: (any one out of two) (d) 5 Give the physical of bound charges. Explain the magnetic field on atomic orbits with necessary equations.

3

[Contd....

PBC-003-1013002 1

- **5** (a) Objective type questions:
 - (1) What is operating point or quiescent point of transistor?
 - (2) What is faithful amplifications?
 - (3) What is stability factor?
 - (4) Define frequency response curve of an amplifier.
 - (b) Answer in brief: (any one out of two)
 - (1) Define voltage gain in single stage transistor amplifier.
 - (2) In transistor circuit, collector load is $4K\Omega$ where as zero signal collector current is 1 mA.
 - (i) What is the operating point is $V_{\rm cc}$ = 12 V?
 - (ii) What will be the operating point if $R_c = 5K\Omega$?
 - (c) Answer in detail: (any **one** out of two)
 - (1) A silicon transistor biased by collector feedback resistor method. Determine the operating point. [Given that $\beta = 100, V_{cc} = 20 V, R_B = 100 K\Omega$ and $R_C = 1 K\Omega$]
 - (2) Derive the equation of stability factor for transistor biasing.
 - (d) Write a note: (any one out of two)
 - (1) Explain the voltage divider method of transistor biasing.
 - (2) Discuss phase reversal in detail.

4

2

3

5